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Diffusion implies spreading, either observable
(physical), or abstract and probabilistic (stochastic). At the be-
ginning of the 19th century, the mathematics of both were es-
tablished by Joseph Fourier and Pierre Simon Laplace. In
1807 Fourier submitted a monograph, Théorie de la propagation
de la chaleur dans les solides (Theory of the propagation of heat
in solids), to the French Academy of Sciences and introduced
the partial differential equation describing heat flow.1,2 The
academy appointed Joseph Lagrange and Laplace as two of
the four reviewers of the monograph; they questioned
Fourier’s use of trigonometric series to solve the heat equa-
tion. Hence, the work was never approved.

At the time, Laplace was working on his theory of prob-
ability—in particular, estimating the probability that the sum
of n random variables may be equal to or less than a certain
value when n is very large. In 1809 he formulated a partial
differential equation with the same form as Fourier’s heat
equation, whose solution would provide an estimate of the
probability.3 Soon thereafter, Laplace published Théorie ana-
lytique des probabilités (Analytical theory of probability)4 and
Fourier published Théorie analytique de la chaleur (Analytical
theory of heat).5

Fourier’s theory had an immediate impact on mathemati-
cal physics by opening up new avenues for the study of heat.
It also inspired scientists of the day to apply the diffusion model
to electricity, molecules, and fluid flow in resistive media. How-
ever, Laplace’s stochastic diffusion, based on his probability
studies, went largely unnoticed for decades. Toward the close
of the 19th century, Lord Rayleigh6,7 and economist and statis-
tician Francis Edgeworth8 drew on Laplace’s treatise on proba-
bility theory to formulate the stochastic diffusion equation with
probability density as the dependent variable. Shortly there-
after, Louis Bachelier9 formulated a diffusion equation to model
random price fluctuations in the stock market. At the turn of
the 20th century, mathematics of diffusion had established two
separate identities—one as a physically observable process, the
other as a probabilistic description.

In 1905 Albert Einstein recognized the equivalence be-
tween two diffusion coefficients—one describing random
events, the other describing a physical process—and used that
equivalence to experimentally establish a kinetic theory of
heat based on molecular motion and estimate Avogadro’s
number, a quantity of fundamental importance in chemistry.10

The diffusion equation is widely used in physical, bio-
logical, geological, and social sciences in physical or stochas-
tic form. Commonly, mathematicians and scientists focus at-
tention on the similarity of mathematical patterns in applying

the diffusion model to one field or another and ignore the in-
herent differences in the nature of the processes. Neverthe-
less, the differences between physical and stochastic diffu-
sion are as notable as their similarities. In his investigations,
Fourier was inspired by curiosity to comprehend the role of
heat in Earth’s lithosphere, oceans, and atmosphere. He thus
found it surprising that mathematical results bearing on
physical diffusion were also relevant to problems in the ab-
stract theory of probability.5

To provide insight into diverse phenomena and the evo-
lution of the mathematical ideas, this paper traces the two-
fold history of diffusion.

Birth of the concepts
Soon after his return from the Egyptian campaign in 1801,
Napoleon Bonaparte appointed Fourier as prefect of the De-
partment of Isère, whose headquarters were in Grenoble. De-
spite major administrative responsibilities, Fourier embarked
on developing a theory for heat that would be as profound
as that of rational mechanics, which dominated post- Newton
thought. Combining action at a distance, an idea central to
celestial mechanics, and Newton’s law of cooling—the rate at
which a body loses heat is proportional to the temperature
difference with its surroundings—Fourier attempted to for-
mulate a differential equation for heat conduction, but he met
with mathematical difficulties.2 He soon abandoned action at
a distance and began visualizing solids as continuous media
in which heat propagated by conduction.1 He also went be-
yond Newton’s law of cooling and proposed that the rate of
heat transfer between two points in a solid is proportional to
their temperature difference and inversely proportional to
their distance. He then formally defined thermal conductiv-
ity, which when multiplied by the temperature gradient at a
point yields the heat flux per unit area per unit time in the
direction of the gradient.

In his 1807 monograph, Fourier introduced the parabolic
partial differential equation in three dimensions,2

(1)

where T is temperature; t time; K thermal conductivity; C spe-
cific heat; D density of the solid; and x, y, and z spatial coor-
dinates. To solve his equation, Fourier chose solid, symmet-
rical bodies with well- defined bounding surfaces—a prism,
rod, cube, cylinder, or sphere. Temperatures or fluxes were
prescribed on the bounding surfaces, and initial conditions
were specified at every point in the interior. Fourier recog-
nized that thermal conductivity and specific heat would gen-
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erally vary with temperature. However, such variation
would render the equation nonlinear and intractable. There-
fore, he assumed that the dependence of K and C on T could
be reasonably ignored over small temperature ranges, which
renders the equation linear and amenable to solution by al-
gebraic methods. Among the methods he devised to solve the
equation, the superposition of trigonometric series was of
fundamental interest in mathematical analysis. 

At the time, Laplace had just completed publication of
Traité de mécanique céleste (Treatise on celestial mechanics),
which had occupied a better part of the previous 20 years,
and resumed work on probability theory, particularly con-
cerning the probability that the sum of a large number of
identically distributed random variables would take on a
given value. It was known through earlier investigations by
Jacques Bernoulli, Abraham de Moivre, and others that the
probability would be the coefficient of a particular term in a
power series. 

Unfortunately, estimating the numerical magnitude of
the coefficient was difficult when the number of summed
random variables became very large. One way to overcome
that difficulty was to evaluate the coefficient as a definite in-
tegral. Accordingly, Laplace used “génératrice” functions to
set up partial difference equations with the coefficient of in-
terest as the dependent variable.3 In particular, he applied a
génératrice function to a power series involving the product
of two terms (tx tx′, where t is arbitrary) with coefficient yx,x′
and obtained the partial difference equation,

(2)

where Δ2yx,x′ = yx + 2,x′ − 2yx + 1,x′ + yx,x′ and Δ′yx,x′ = yx,x′ + 1 − yx,x′. Here,
subscripts x and x’ are integers. As the number of terms in the
power series becomes very large, the difference equation can
be replaced by its differential equivalent (in Laplace’s notation):

(3)

In this equation, yx,x′ represents the probability that the sum
of x′ identically distributed random variables takes on the
value x. Compared to the heat equation, probability y corre-

sponds to temperature; the magnitude of the sum of random
variables, x, corresponds to distance; and the number of ran-
dom variables, x′, corresponds to time. Laplace then demon-
strated that

(4) 

where φ is any arbitrary function, satisfies equation 3.
In equation 3, the domain of x is unbounded. And solu-

tions over such unbounded domains cannot be expressed as
trigonometric series. In the 1807 monograph, however,
Fourier designed solutions involving trigonometric series es-
pecially for bounded domains. Although he took pains to ex-
plain to Lagrange (a referee of Fourier’s monograph) that
when a function is introduced its domain must be specified,
his efforts were in vain; for a historical account of Lagrange
and Fourier’s disagreement, see reference 11.

The French Academy of Sciences instituted a prize com-
petition in 1811 on the topic of heat conduction. Fourier sub-
mitted an extended version of his rejected 1807 work and was
awarded the prize in 1812. Probably influenced by Laplace,
Fourier had extended his studies in the prize essay to infinite
domains, within which diffusion was driven purely by initial
conditions. He considered an infinite line with −∞ < x < +∞.
At time t = 0, the temperature everywhere along the line was
zero, except over a segment extending on either side of x = 0.
Over that segment, the temperature distribution was an ar-
bitrarily prescribed function f(x). To solve for T(x,t), Fourier
sought solutions in the form T = e−x e−kt and showed through
a series of transformations that equation 4 also was a solution
to the heat diffusion problem.12

Going beyond génératrice functions, Laplace was more
concerned with obtaining a mathematical proof of what is
now known as the central limit theorem. Of fundamental im-
portance in probability theory, the theorem states that the
sum of n independently and identically distributed random
variables x1, x2, x3, . . . xn with mean μ and variance σ2 asymp-
totically approaches a normal distribution with mean nμ and
variance nσ2: 

(5)

Joseph Fourier

(1768–1830, left) and
Pierre Simon Laplace
(1749–1827, right).
Fourier’s heat equa-
tion of 1807 probably
influenced Laplace to
express as a partial
differential equation
the partial difference
equation that he had
already derived for
the behavior of ran-
dom variables. In turn,
Laplace inspired
Fourier to extend the
heat equation to dif-
fusion in infinite do-
mains. (Portraits cour-
tesy of Académie des
sciences, Institut de
France.)

Δ = Δ ,2
, ,y yx x x x′ ′′

d y2 dy

dx2 dx′
= .

y e φ x x dz,= ( + 2 )∫ −z2
z√ ′

∞

−∞

f x n( , ) = e .
1 −( − )x μ 2/2nσ2

√2πnσ2



50 July 2009    Physics Today www.physicstoday.org

Laplace succeeded in providing the proof for variables of ar-
bitrary distribution.13

In his 1822 Théorie analytique de la chaleur,5 Fourier went fur-
ther with infinite domains than he had in the prize essay. For
example, he imagined the infinite line as having a certain quan-
tity of heat released within a very small segment ω located at
x = 0 at t = 0 such that its temperature increases to a value f.
Everywhere else the temperature remains 0. That condition is
referred to as an instantaneous plane source. The differential
equation for that one-dimensional problem is satisfied by

(6)

where ωf is the strength of the source and η = K/CD is thermal
diffusivity. If we let ωf = 1 in equation 6, then by analogy to
equation 5 with μ = 0, thermal diffusivity η equals half of the
variance σ2.

Random walk through the 19th century
The first phase in the history of diffusion came to an end
with Fourier’s 1822 treatise. Over succeeding decades,
Fourier’s physical diffusion equation (equation 1) had a
spectacular impact on science. But the influence of Laplace’s
stochastic equation (equation 3) lagged more than half a cen-
tury behind.

Fourier’s analysis of trigonometric series led to much in-
terest in precisely and rigorously defining functions of real
variables through the contributions of Lejeune Dirichlet and
Bernhard Riemann.11 On the experimental side, Thomas Gra-
ham’s investigations on gas diffusion and Adolph Fick’s stud-
ies on liquid diffusion showed that material diffusion in-
volves simultaneous transport of two or more species in
opposite directions, whereas thermal diffusion involves only
one migrating species, heat.14

In 1887 Jacobus van’t Hoff examined data on osmotic
pressure exerted by nonelectrolytes in aqueous solutions and
discovered that the relations among osmotic pressure, solu-
tion volume, and temperature were remarkably similar to
ideal gas laws.15 He postulated that osmotic pressure is a
manifestation of kinetic energy of solute molecules per unit
volume of solution and that osmotic pressure depends on the
number of molecules, regardless of their type. Soon after-
ward, Walther Nernst gave a dynamical interpretation of
Fick’s law.16 He suggested that molecular diffusion was gov-
erned by the gradient of osmotic pressure and that in dilute
solutions, concentration and osmotic pressure were mutually
related by a simple constant.

Through much of the 19th century, scientists debated the
molecular nature of matter. Toward the end of the century,
additional evidence in favor of molecular makeup of matter
was emerging from experimental observations on Brownian
motion; those observations suggested that thermal agitation
of molecules was its underlying cause.

Stochastic diffusion and physical diffusion are unified
by analogous expressions, 

(7)

in which the variance—that is, statistical dispersion—is anal-
ogous to diffusivity, and the number of random variables
summed up is analogous to time. The unity of those equations
was rediscovered in the 1880s by Rayleigh and Edgeworth.
Rayleigh addressed the probability associated with a large
number of vibrations of the same amplitude with phases either
positive or negative.6 For that distribution of vibrations, the
variance is unity. A more general problem involving the sum
of random variables had been solved by Laplace using

Bernoulli’s theorem.4 Let the sum of n random variables chosen
from the distribution be x. Rayleigh showed that the probabil-
ity density function for the vibration problem is

(8)

which is a consequence of the central limit theorem. More
than a decade later, Rayleigh recognized serendipitously that
the probability density function is also a solution to Fourier’s
diffusion equation.7 Let f(n,x) be the probability that the sum
of n random variables equals x; the evolution of that proba-
bility as a function of x and n is given by the partial differen-
tial equation

(9)

where 1⁄2 represents the diffusion coefficient, which is equal
to half of the variance. Rayleigh also showed that the average
intensity—or, more precisely, the expectation value for the
square of the amplitude—is equal to n.

Edgeworth, a statistician, approached the problem of
error propagation with the premise that every measurable
observation may be regarded as a function of an indefinite
number of elements, each being a member of the same sym-
metrical frequency distribution.8 He set himself the task of
showing that when the number of elements is large, the cu-
mulative error approaches a normal distribution, a result
known as the law of error. To that end he followed Laplace’s
approach, assuming that the required function is a particular
term in a power series. Using a recursive relationship, he then
showed that the function representing cumulative error is ob-
tainable from the solution to a partial differential equation of
the same form as equation 9.

Rayleigh and Edgeworth firmly established Laplace’s
stochastic diffusion equation as a description of the evolution
of a normal distribution with increasing sample size. Still,
their analyses had been restricted to thought experiments in-
volving random samples, not physical observations. The first
step toward addressing time was taken by Bachelier, who de-
veloped a theory of speculation, and Karl Pearson, who in-
troduced the phrase “random walk.”

Bachelier showed that a diffusion equation could describe
temporal variations in the values of stock option prices, pro-
vided one first make some assumptions about the randomness
of stock prices.9 By pursuing an approach similar to Rayleigh’s
involving finite difference equations,7 he introduced the notion
of “radiation of probability,” which is conceptually analogous
to Fourier’s law of heat conduction. Bachelier expressed the
time evolution of stock price in the form of a diffusion equation
similar to equation 9, with the difference that the dependent
variable was an exceedance probability rather than probability
density and the number of samples n was replaced by time.
Exceedance probability denotes the probability of an event’s
outcome exceeding a certain value, compared to probability
density, which denotes the probability of an event’s outcome
having a certain value.  

Pearson’s contribution came in the form of a short letter
to the readers of Nature17 in 1905. He sought help solving the
following problem: A man starts from O and walks ℓ yards
in a straight line; he then turns through some angle and
walks another ℓ yards in a straight line, a process he repeats
n times. What is the probability that after n stretches, he ends
up at a distance between r and r + δr from O? Rayleigh re-
sponded to the letter by drawing attention to his solution
(equation 8) for large values of n.7 Acknowledging the use-
fulness of Rayleigh’s solution, Pearson observed that it
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would be of much interest to see
how  solutions for small values of
n gradually evolved into a normal
distribution valid for large values
of n.

A synthesis
That same year, Einstein filed 
his dissertation on determining
molecular dimensions by study-
ing the diffusion of sugar, a non-
electrolyte, in aqueous solutions.
He then devised an experimental
methodology to establish a mo-
lecular-kinetic theory of heat. His
premise was that if the theory
were correct, then microscopi-
cally visible particles in suspen-
sion must perform random
movements of sufficient magni-
tude to be visually observable.
Moreover, he asserted that if his
theory could be experimentally
validated, classical thermody-
namics would be inapplicable to
microscopically distinguishable
particles.

Einstein’s approach con-
sisted in looking at particle mo-
tion on both a macroscale and a
microscale,10 for both of which the
driving force on the particles
would come from the kinetic en-
ergy of solvent molecules. On the
macroscale, the kinetic energy
would be manifest as osmotic
force, and on the microscale, as
force acting randomly on individ-
ual particles. The microscale 
motion would be described by 
a stochastic diffusion equation;
that on the macroscale would be
expressed by the equation for 
molecular diffusion.

The starting point for a
macro scopic description was van’t
Hoff’s expression for osmotic
pressure exerted by n molecules of
a dilute nonelectrolyte,15

(10)

where R is the universal gas constant, T is absolute tempera-
ture, V is solution volume, and N is Avogadro’s number. Ein-
stein reasoned that this expression for invisible molecules was
equally applicable to microscopically visible particles in sus-
pension. He then took Nernst’s dynamical view16 of Fick’s
model for molecular diffusion and assumed that the diffusion
is driven by spatial variations in osmotic pressure of the solute.

Based on those assumptions, Einstein considered a tube
of uniform cross section that was filled with a dilute suspen-
sion of spherical particles of radius r, diffusing at a constant
rate and driven by the difference in osmotic pressure between
the two ends. The need to balance impelling osmotic forces
and resistive viscous forces led him to the macroscopic, or
physical, diffusion coefficient 

(11)

where μ is the coefficient of viscosity.
For the microscale random walk of particles along an in-

finite line with origin at x = 0, he followed a recursive proce-
dure similar to that of Edgeworth8 and arrived at the stochas-
tic equation 

(12)

where f(x,t) is the probability that a particle would be at a dis-
tance x from the origin at time t. Ds is half the variance of the
distribution that describes the random motion. The equation

Joseph Fourier’s monograph on heat diffusion was submitted handwritten (top) to
the Institut de France in 1807. Among the four referees were Joseph Lagrange and
Pierre Simon Laplace, who rejected the monograph out of mistrust of Fourier’s use of
trigonometric series. It was never published. Laplace expressed probabilities associated
with random variables as partial difference equations as early as 1779. This 1809 excerpt
(bottom) from Journal de l’École Polytechnique shows his solution to a partial differential
equation analogous to the heat equation.RT
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is essentially the same as Rayleigh’s stochastic equation,
equation 9. Analogous to Rayleigh’s expression for average
intensity, Einstein obtained an expression for the arithmetic
mean of the squares of the particles’ displacements. The
square root of that is the mean value of the displacement:

(13)

Assuming an equivalence between the microscopic and
macroscopic representations, Dp can be treated as equal to Ds,
and

(14)

Thus if λx can be discerned from visual observations, then
equation 13 determines Avogadro’s number N.

The stochastic diffusion equation and its solution were
already well established in 1905. So also were Fick’s law for
molecular diffusion and the nature of osmotic pressure. Yet
Einstein’s work on Brownian motion is recognized as one of
his most significant contributions. What is notable about Ein-
stein’s work is that he looked at molecular diffusion both on
the microscale as a stochastic problem and on the macroscale
as a dynamical, deterministic problem. Then, with remark-
able insight, he treated the two diffusion coefficients as mu-
tually interchangeable. The result was to integrate the phys-
ical and the abstract facets of diffusion and help resolve a
major problem of 19th century physics—molecular reality.

Mathematical metaphor
As the history of diffusion suggests, the evolution of ideas
about it has been spurred as much by conceptualization of
physical spreading (of heat and molecules, for example) as
by abstract mathematical notions such as probability. But the
overlap between physical and stochastic diffusion—or rather,
the realm in which both models are equivalent—is limited to
a narrow class of problems. To appreciate problems outside

the overlap, one must strike a balance between physical in-
tuition and mathematical abstraction.

Two physical quantities, thermal conductivity and spe-
cific heat, determine the manner in which heat spreads in a
solid over time. And both can be independently measured.
In stochastic diffusion, by comparison, spreading is gov-
erned by a single parameter, the variance. Although vari-
ance is mathematically analogous to thermal diffusivity—
conductivity divided by specific heat—the stochastic
problem has no attributes that are separately analogous to
conductivity and specific heat.

The stochastic diffusion equation, as addressed by
Laplace, Rayleigh, Edgeworth, Bachelier, and Einstein, is
deeply connected to the central limit theorem. It is a parabolic
partial differential equation in which the derivative with re-
spect to number of samples n or time t has to be greater than
zero. That is, the stochastic equation does not apply to a
steady-state case in which the probability density remains
constant. 

In physical diffusion, by comparison, the time derivative
can be zero or greater. In fact, boundary-value problems arise
only when the time derivative is zero. Those problems in-
volve steady-state spatial distributions of potentials dictated
by prescribed boundary conditions or the presence of sources
and sinks. Recall that Fourier’s trigonometric series solutions
were restricted to bounded domains; a normal distribution
pertaining to an infinite domain could not be represented by
a trigonometric series. The difference suggests that the sto-
chastic equation does not strictly apply to boundary-value
problems.  

Stochastic diffusion is designed to handle discrete ob-
jects that move randomly—for example, molecules diffus-
ing in gases, liquids, or solids. However, some problems of
physical diffusion are not associated with random motion.
Heat is a good example. Another is the viscous motion of
fluids in porous materials. Viscous motion, which involves
effects of molecular collisions with the walls of a container,

Jacobus van't Hoff 

(1852-1911, left) discovered
in 1887 that the behavior of
osmotic pressure in dilute
solutions conformed re-
markably to the ideal gas
laws. The conformity led
him to suggest that osmotic
pressure is a manifestation
of kinetic energy of solute
molecules and could be ex-
plained purely on the basis
of the number of dissolved
molecules rather than of the
type of molecule. In formu-
lating a molecular-kinetic
theory of heat, Albert Ein-
stein (1879-1955, right) used
van't Hoff's model to cast
Fick's law of molecular diffu-
sion in a dynamical form
and derived an expression
for the molecular diffusion
coefficient. (Einstein image from the Hebrew University of Jerusalem, Albert
Einstein Archives, courtesy of the AIP Emilio Segrè Visual Archives.)
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does not constitute molecular diffusion.
In physical diffusion, conservation of mass or energy is

implicit in the partial differential equation. The dependent
variable is a potential whose spatial gradient is a driving
force. The slope of the curve relating potential to mass or en-
ergy is a capacitance—specific heat, for example. In stochastic
diffusion, probability density is mathematically analogous to
the potential of physical diffusion. That similarity, however,
is superficial. Probability in stochastic diffusion denotes the
number of outcomes in an interval of a histogram or the num-
ber of particles in an interval of space, expressed as a fraction
of total number of outcomes or particles. Whereas a potential
is defined as energy per unit mass or volume of a material,
probability is not restricted to a unit interval. In stochastic dif-
fusion, the total number of outcomes is to be held constant,
or conserved, so that the definition of probability remains
consistent as n is increased. In physical diffusion, the defini-
tion of potential is independent of total mass or energy of the
system.

In science, metaphor plays an important role in transfer-
ring ideas among different disciplines. Metaphors, though,
can often mask inner truths. Essential to scientific training is
an ability to properly appreciate metaphors so that they do
not inhibit a deeper understanding of phenomena. The
metaphor of diffusion, which unites physical and probabilis-
tic spreading, lucidly illustrates the power and the limitation
of scientific metaphors.

I thank Jean-Pierre Kahane for insightful discussions on the mathemat-
ics and history associated with Fourier’s magnum opus. Nic Spycher
helped generously with the French translation. I also greatly appreciate
the library system of the University of California.
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